a survey of invertibility and spectrum preserving linear maps

Authors

a. a. jafarian

abstract

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Spectrum Preserving Linear Maps Between Banach Algebras

In this paper we show that if A is a unital Banach algebra and B is a purely innite C*-algebra such that has a non-zero commutative maximal ideal and $phi:A rightarrow B$ is a unital surjective spectrum preserving linear map. Then $phi$ is a Jordan homomorphism.

full text

Invertibility Preserving Linear Maps of Banach Algebras

This talk discusses a conjecture of R. V. Kadison and myself. Our conjecture is that each one-to-one linear map of one unital C*-algebra onto another that preserves the identity is a Jordan isomorphism if it maps the invertible elements of the first C*-algebra onto the invertible elements of the other C*-algebra. Connections are shown between this conjecture and Cartan’s uniqueness theorem. 1. ...

full text

Linear Maps Preserving Invertibility or Spectral Radius on Some $C^{*}$-algebras

Let $A$ be a unital $C^{*}$-algebra which has a faithful state. If $varphi:Arightarrow A$ is a unital linear map which is bijective and invertibility preserving or surjective and spectral radius preserving, then $varphi$ is a Jordan isomorphism. Also, we discuss other types of linear preserver maps on $A$.

full text

A Note on Spectrum Preserving Additive Maps on C*-Algebras

Mathieu and Ruddy proved that if be a unital spectral isometry from a unital C*-algebra Aonto a unital type I C*-algebra B whose primitive ideal space is Hausdorff and totallydisconnected, then is Jordan isomorphism. The aim of this note is to show that if be asurjective spectrum preserving additive map, then is a Jordan isomorphism without the extraassumption totally disconnected.

full text

Linear maps preserving or strongly preserving majorization on matrices

For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...

full text

My Resources

Save resource for easier access later


Journal title:
bulletin of the iranian mathematical society

Publisher: iranian mathematical society (ims)

ISSN 1017-060X

volume 35

issue No. 2 2011

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023